T(x) = x/3 | if x ≡ 0 (mod 6) |
T(x) = (2x - 2)/3 | if x ≡ 1 (mod 6) |
T(x) = (5x - 4)/3 | if x ≡ 2 (mod 6) |
T(x) = 4x/3 | if x ≡ 3 (mod 6) |
T(x) = (5x - 8)/3 | if x ≡ 3 (mod 6) |
T(x) = (4x - 2)/3 | if x ≡ 5 (mod 6) |
We conjecture that every trajectory will end in one of the cycles:
cycle 1: 0
cycle 2: -6, -2
cycle 3: 2
cycle 4: -16, -28, -48
cycle 5: 4
cycle 6: -78, -26, -46
cycle 7: -22, -38, -66
cycle 8: -32, -56, -96
cycle 9: 2454, 818, 1362, 454, 754, 1254, 418, 694, 1154, 1922, 3202, 5334, 1778, 2962, 4934, 8222, 13702, 22834, 38054, 63422, 105702, 35234, 58722, 19574, 32622, 10874, 18122, 30202, 50334, 16778, 27962, 46602, 15534, 5178, 1726, 2874, 958, 1594, 2654, 4422, 1474.
See G. Venturini, Iterates of Number Theoretic Functions with Periodic Rational Coefficients (Generalization of the 3x+1 Problem), Studies in Applied Mathematics, 86 (1992)185-218.
Last modified 24th February 2006
Return to main page