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ARITHMETIC PROPERTIES OF CERTAIN Q-SERIES.
Amou M. (Japan)

amou@sv1.math.sci.gunma-u.ac.jp

We consider solutions of certain Q-difference equations and present several results on irrationality and
linear independence of their values.

ON A SPECIAL CHARACTER SUM
Baoulina Yu. (Moscow, MSPU)

jbaulina@mail.ru

Let p be a rational prime, q = ps, Fq be a finite field of q elements, a ∈ Fq and ψ be a nontrivial multiplicative
character on Fq. We consider the sum

T (ψ) =
∑

x1,...xn∈Fq

ψ(x1 · · ·xn)ψ(xm1
1 + · · ·+ xmn

n + a),

where m1, . . . ,mn are positive integers such that mj | (q − 1) for each j ∈ {1, 2, . . . , n}. The sums of this type
appear in the problem of finding an explicit formula for the number of solutions of the equation

xm1
1 + · · ·+ xmn

n + a = bx1 · · ·xn,

where a, b ∈ Fq, b 6= 0. Note that the sum T (ψ) is a generalization of the classical Jacobsthal sum.

In this talk we evaluate T (ψ), under the certain restrictions on a, n, q and the exponents.

SOME ADVANCES AND OPEN PROBLEMS IN METRIC THEORY OF
DIOPHANTINE APPROXIMATION

Beresnevich V.V. (Minsk, Belarus)
beresnevich@im.bas-net.by or vb8@york.ac.uk

The metric theory of Diophantine approximation began with E. Borel and A. Khintchine in the beginning
of the 20th century. In this theory properties of real numbers (or points) are studied from measure theoretic
point of view. As it is well known, by Dirichlet's theorem, for any irrational number x there are infinitely many

rational numbers p/q satisfying inequality
∣∣∣x− p

q

∣∣∣ < 1
q2 . And this can not be significantly improved as for the

Golden ration α = (
√

5 − 1)/2 one has
∣∣∣α− p

q

∣∣∣ ≥ 1√
5q2

for all p/q ∈ Q. Now, assuming that we neglect sets of

measure zero, Khintchine's theorem provides the complete description of approximation low for almost all real
numbers. More precisely, given a positive decreasing approximation function ψ : N → R+, for almost every (in
Lebesgue measure) real number x the inequality∣∣∣∣x− p

q

∣∣∣∣ < ψ(q)

has infinitely many solutions p/q ∈ Q if the sum
∞∑
h=1

ψ(q)

diverges and it has finitely many solutions if that sum converges.

In higher dimensional spaces Diophantine approximation take various forms such as simultaneous and linear
(or dual), standard and multiplicative.

The general idea of metric Diophantine approximation is to take the set of points satisfying some approx-
imating properties and then to investigate measure theoretic properties of this set such as Lebesgue measure,
Hausdorff measure and dimension.

In this talk some of the history, problems and recent advances regarding metric theory of Diophantine
approximation will be discussed. The following two references are also suggested for further reading.
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HAUSDORFF DIMENSION IN DIOPHANTINE APPROXIMATION ON
MANIFOLDS

Bernik V.I. (Minsk, Belarus)
bernik@im.bas-net.by

Measure theory in Diophantine approximation was used for the first time by O. Borel and A. Khintchine.
A little bit later V. Jarnik and A. Besikovitch used Hausdorff dimension. B.Volkmann, V.G. Sprinzuk, R. Bak-
er and the author developed methods for upper estimations of Hausdorff dimension, A. Baker, V. Schmidt,
M. Dodson and V.V. Beresnevich worked out the methods for lower estimation based on a fruitful idea of
regular systems.

The author will analyze methods mentioned above, and talk about the latest results on upper estimation
in the problems of Diophantine approximations on manifolds.

ON EVALUATION OF A SUM OF PRODUCTS OF INVERSE DISTANCES
TO THE NEAREST INTEGER

Bodyagin D.A. (Minsk, Belarus)
bodiagin@mail.ru

Consider the problem of a unique distribution of fractional parts in the sequence {kα}∞k=1. One of the

solutions of this problem requires an evaluation of the sums
∑K
k=1 ‖kα‖−1 (for the details refer to [1]). A similar

question will arise when investigating the problem of a unique distribution of fractional parts of the linear
combinations {α1a1 + α2a2 + · · · + αnan}. In that case, one has to evaluate the sums

∑K
k=1

∏n
j=1 ‖kαj‖−1.

Placing the following restriction on the vector α = (α1, · · · , αn)

∀ε > 0 ∃k0 = k0(α, ε) , ∀k > k0

n∏
j=1

‖kαj‖−1 > k−1−ε. (1)

the following asymptotic equality is proved.

Theorem 1. Suppose that a vector α ∈ Rn satisfies (1). Then we have

K∑
k=1

n∏
j=1

‖kαj‖−1 = O(K1+ε2),

where ε2 → 0 as ε→ 0.

References
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ON EXACT ORDER OF SIMULTANEOUS APPROXIMATION OF ZERO IN
R3.

Borbat V.N., Charny S.G. (Mogilev, MSU)
ndj123@tut.by
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The direction of studies formulated in the title was indicated by the works of V. G. Sprindzhuk [1,2] in
which he posed the basic problem of this direction, solved particular cases of the problem, and pointed out some
applications. The conjecture of V. G. Sprindzhuk is as follows. Suppose that P (x) = anx

n + an−1x
n−1 + · · ·+

a1x+ a0 is a polynomial with integer coefficients, H = H(P ) = max
0≤i≤n

|ai| is the height of P (x).

Let νn(ω) be the least upper bound ν > 0, for which the system of inequalities

max(|P (ω1)|, ..., |P (ωk)|) < H−ν

has an infinite number of solutions in polynomials P (x) ∈ Z[x]. Is it true that for almost all ω = (ω1, ..., ωk)

νn(ω) =
n+ 1
k

− 1 ?

The conjecture of V. G. Sprindzhuk in a more generalized form was proved by V. I. Bernik [3]. Let wn(ω)
be the least upper bound w > 0, for which the inequality

k∏
i=1

|P (ωi)| ≤ H−w (1)

has an infinite number of solutions in polynomials P (x) ∈ Z[x].

Then for almost all ω : wn = n − k + 1. Later various generalizations and applications of the result were
obtained [4,5]. The work [6] lets to pass from power function to any function Ψ(x) in the second member of the
inequation (1), which monotonically decreases for x > 0, and

∑∞
H=1 Ψ(H) <∞.

We obtain three-dimensional analog of the theorem in [6]; this analog can be considered as a proof of a
three-dimensional generalization of the Baker's conjecture.

Theorem 1. Let the function Ψ(x) monotonically decrease for x > 0, and
∑∞
H=1 Ψ(H) < ∞. The system of

inequalities 
|P (ω1)| < H−w1Ψν1(H)
|P (ω2)| < H−w2Ψν2(H)
|P (ω3)| < H−w3Ψν3(H)

(2)

where w1 +w2 +w3 = n− 3, ν1 + ν2 + ν3 = 1, has only a finite number of solutions in polynomials P (x) ∈ Z[x]
for almost all (ω1, ω2, ω3) ∈ R3.

The proof is based on the essential and inessential domains method by V. G. Sprindzhuk [2].
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DIOPHANTINE DESCRIPTION OF SEQUENCES OF PRIME NUMBERS
Budarina N.V. (Vladimir, VGPU)

budarina@vgpu.vladimir.ru
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The solvability over the ring of integers Z of some diophantine equations is connected with the ability of
numbers to form the sequences of prime numbers, in particular with the quality of numbers to be prime twins.

Theorem 1. A positive integer n ≡ 1 (mod 8) is the first prime twin, i.e. n and n+ 2 are prime numbers, if
and only if:

1. n = 2x2
1+x

2
2

2x1+1 (xi ∈ Z),
2. x1 and x2 are relatively prime numbers,
3. the number of representations (x1, x2) of n is 8,
4. n, n+ 2 are squarefree numbers.

This theorem is the natural continuation of the Fermat theorem about two squares, according to which any
prime number p ≡ 1 (mod 4) is represented by two squares p = x2 +y2 and the number of such representations
is 8. The present theorem allows to obtain the same characteristic of the first prime twin p among the pair of
prime numbers p, p+2: such number is presented as a rational fraction of a special kind p = (2x2

1+x2
2)/(2x1+1),

and the number of such representations is again 8 .

The results obtained for the prime twins are extended onto sequence k = 4, 6, 8, 10, 12 prime numbers. For
indicated sequences of prime numbers it is proved that the least prime from k numbers is an integer root for
some family of polynomials of degree not exceeding k, i.e. it's shown that such prime numbers admit algebraic
parametric representation by the roots of polynomials with integer coefficients.

References

[1] Budarina N.V. About the number of solutions of non-homogeneous equations // Chebyshev's collection.
2001. V.2. P. 19 � 30.
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ALGEBRAIC INDEPENDENCE OVER Qp

Peter Bundschuh (K�oln)
pb@mi.uni-koeln.de

We report on joint work with Kumiko Nishioka. Let f(x) be a power series
∑
n≥1 ζ(n)xe(n), where (e(n))

is a strictly increasing linear recurrence sequence of non-negative integers, and (ζ(n)) a sequence of roots of
unity in Qp, the algebraic closure of Qp, satisfying an appropriate technical condition. Then we are mainly
interested in characterizing the algebraic independence over Qp of elements f(α1), . . . , f(αt) from Cp in terms
of the distinct α1, . . . , αt ∈ Qp satisfying 0 < |ατ |p < 1 for τ = 1, . . . , t. A striking application of our basic result
says that, in the particular case e(n) = n, the set {f(α) | α ∈ Qp, 0 < |α|p < 1} is algebraically independent
over Qp if (ζ(n)) satisfies the �technical condition�. We shall end the talk by stating a conjecture concerning
more general sequences (e(n)).

DIOPHANTINE APPROXIMATION OVER THE REAL AND COMPLEX
NUMBERS

Dodson M.M.(York,UK)
mmd1@york.ac.uk

VARIATIONS WITH MAHLER'S MEASURE
Dubickas A.(Vilnius University, Lithuania)

Arturas.Dubickas@maf.vu.lt

Let α be an algebraic number of degree d over Q with minimal polynomial

adz
d + · · ·+ a1z + a0 = ad(z − α1) . . . (z − αd) ∈ Z[z].

Its Mahler measure is defined by M(α) = ad
∏d
j=1 max{1, |αj |}. It is well�known that, for every α ∈ Q, M(α)

is a real algebraic integer greater than or equal to 1.

Let M be the set of all Mahler measures of algebraic numbers, and let M∗ be a monoid under multiplication
generated by M. By the multiplicative property of Mahler measures M∗ is the set of all Mahler measures of
integer (not necessarily irreducible) polynomials. The task of thorough investigation of the sets M and M∗ is
considered to be a very ambitious one, since even simply looking Lehmer's question [5] on whether there are
elements of M in the interval (1, 1.176) remains open.

In [1] D.W. Boyd found a necessary geometric condition for a number to belong to M. Every α ∈ M must
be an algebraic integer having its other conjugates in the annulus α−1 ≤ |z| < α. This however leaves open the
possibility for numbers like α0 := 1.19385 . . . solving z5 − z2 − 1 = 0 to belong to M. In [2] we prove a result
which shows that, in principle, the problem of determining whether any specific α belongs to M∗ or not can be
solved. Its partial case can be stated as follows.

Theorem 1. Suppose that α is an algebraic number of degree d, and F is the Galois closure of Q(α) over Q.
If α ∈ M∗ then α = M(f) for some separable polynomial f(z) ∈ Z[z] of degree at most 2d whose roots lie in F .

In particular, the theorem implies that α0 /∈ M∗. In [2] we also show that M 6= M∗, by giving an explicit
example.

I will also sketch some of the results of [3] and [4] concerning various problems connected with Mahler's
measure.

This research was partially supported the Lithuanian State Science and Studies Foundation.
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SAILS AND NORM MINIMA OF LATTICES
German O.N. (Moscow, MSU)

german_oleg@rambler.ru

If Λ ⊂ Rn is an n�dimensional lattice, then its norm minimum N(Λ) is defined as

inf
x∈Λ\{0}

|x1 · . . . · xn|.

Consider an irrational n�dimensional lattice Λ ⊂ Rn. The convex hull K of the set of lattice points with
positive coordinates is called a Klein polyhedron. Its boundary ∂K is called a sail. Similarly we can define a sail
in each of the 2n orthants and thus obtain 2n sails generated by Λ. The described construction is one of the
most natural multidimensional geometric generalizations of continued fractions. The role of partial quotients is
played by the determinants of the sails' faces. (By a determinant of face F we mean the volume of the pyramid
conv(F ∪ {0}) multiplied by n!).

It is well known that a number α is badly approximable (i.e. there exists such a constant c that for each
convergent p/q of α |qα − p| > c/q) if and only if the partial quotients of α are bounded. We proved an
analogous statement for sails:

Theorem 1. Let Λ be an irrational n�dimensional lattice in Rn with detΛ = 1. Then N(Λ) = µ > 0 if and
only if there exists such a constant D that for each face F of each of the 2n sails generated by Λ we have
detF < D.

Horeover, D depends only on µ and does not depend on Λ, same as µ depends only on D.

ON MOTIVES OF SCHEMES OF DIMENSION ONE
Guletski�i V. (Minsk)

vladimir.guletskii@mathematik.uni-regensburg.de

Let C be a Q-linear, pseudoabelian and symmetric monoidal category with a product ⊗. Let n be a natural
number and let Σn be the symmetric group of permutations of n elements. For any X ∈ C one can define
its wedge X [n) and symmetric X(n] powers as images of the idempotents in EndC(X⊗n) corresponding to the
"vertical"and "horizontal"irreducible representations of Σn over Q. These powers generalize usual wedge and
symmetric powers of vector spaces over a field of characteristic zero. Then X is called to be evenly (oddly)
finite dimensional if X [n) (or, respectively X(n]) is a zero object for some n. X is said to be finite dimensional
if X ∼= X+ ⊕X− where X+ is evenly and X− is oddly finite dimensional.

The theory of finite dimensional Chow motives was introduced by S.-I. Kimura in [6], and then considered
in [4] and [5]. The abstract theory was developed independently by O'Sullivan, [1] (compare with the concept
of a Schur functor in [2]).

Let k be a field and let DM−(k)Q be the Q-localized Voevodsky's triangulated category of motives over k,
[8]. The following theorem generalizes motivic finite dimensionality for smooth projective curves proved in [6]
to arbitrary schemes of dimension one:

Theorem 1. Let k be a field of characteristic zero and let X be an integral scheme of dimension one, sepa-
rated an of finite type over k. Then its motive M(X), considered in Voevodsky's category DM−(k)Q, is finite
dimensional.
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This result is a corollary of the additivity for Kimura finite vertices in distinguished triangles in quite
general triangulated categories represented as homotopy categories of pointed model and monoidal categories
with invertible simplicial suspension, see [3].

The same result as in the theorem above has been independently obtained by Carlo Mazza, [7].
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ON LINEAR COMBINATIONS OF LOGARITHMS OF ALGEBRAIC
NUMBERS WITH ALGEBRAIC COEFFICIENTS

Gutnik L.A.(Moscow, MSUEM)
gutnik@gutnik.mccme.ru

Let {d,m, n} ⊂ N, d ≥ 2, K = Q[exp(2πi/m)],Λ(n) be the Mangold's function, T ∈ R,

ε2 = 1, Λ0(m) = (1− 2{m/2})Λ(m/(2− 2{m/2})),

ω(m) = 4(1− {(m+ 2)/4})(1− 2{m/2}) + 2{m/2},
log(z), where z ∈ C�(−∞, 0] is a branch of the logarithm with | arg(z)| < π. Further, let

wd(T ) > 0, 2(wd(T ))2 = ((d2(3− T 2) + 1)2 + 16d4T 2)1/2 + d2(3− T 2) + 1,

Vd,k(m) = k(d+ 1)Λ0(m)/φ(m) + ln((d− 1)(d−1)/2(d+ 1)(d+1)/2d−d)+

(π/2)
1∑

µ=0

(1− 2µ)
[(d−1)/2]+µ∑

κ=1

cot
(

πκ

d− 1− 2µ

)
,

ld(ε, T ) = − ln(4(d+ 1)d+1(1− 1/d)d−1) +
1∑

k=−1

((d− 1)1−|k|/2) ln((2d+ (d+ 1)k + εwd(T ))2 + (dT (1 + 2dε/wd(T ))2),

gd,k(m) = (−1)kld((−1)k, cot(πω(m)/(2m)) + Vd,1(m)),

hd,k(m) = −Vd,k(m)− ld(1, tan(π/m)),

where m 6= 2, k = 0, 1. Let

β(d,m) = gd,0(m)/hd,1(m), α(d,m) = β(d,m)− 1 + gd,1(m)/hd,1(m).
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Theorem 1. If m ∈ N�{1, 2, 6}, then 0 < hd,1(m) and for each ε > 0 there exists Cd,m(ε) > 0 such that

max
σ∈Gal(K/Q)

(|qσ log((2 + exp(2πi/m))σ)− pσ|) ≥

≥ Cd,m(ε)( max
σ∈Gal(K/Q)

(|qσ|)−α(d,m)−ε,

where p ∈ ZK , q ∈ ZK�{0}; furthermore, for any q ∈ ZK�{0} and any ε > 0 there exists C∗d,m(q, ε) > 0 such
that

bβ(d,m)+ε max
σ∈Gal(K/Q)

(|qσb log((2 + exp(2πi/m))σ)− pσ|) ≥ C∗d,m(q, ε),

where p ∈ ZK , b ∈ N.
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PERFECT POWERS FROM PRODUCTS OF CONSECUTIVE
TERMS IN ARITHMETIC PROGRESSION

Gy�ory K. (Debrecen)
gyory@math.klte.hu

The study of the diophantine equation

n(n+ d) . . . (n+ (k − 1)d) = byl (1)

in integers n, d, y, b ≥ 1, k, l ≥ 2 with gcd(n, d) = 1, P (b) ≤ k goes back to the 17th century. There is an
extremely rich literature of equations of this form.

In the classical case d = 1 it was proved by Erd�os and Selfridge that (1) has no solution for b = 1. A
similar result was proved by Erd�os (k ≥ 4) and Gy�ory (k = 2, 3) for b = k! (binomial equation). A common
generalization of these was established by Saradha (k ≥ 4) and Gy�ory (k = 2, 3) for any b with P (b) ≤ k.

The general case d ≥ 1 is more complicated. Although equation (1) has attracted the attention of many
mathematicians, only some partial results are known so far. In our talk some recent results will be presented
which have been obtained jointly with M. Bennett, L. Hajdu and N. Saradha.

Together with Hajdu and Saradha we proved that for fixed k ≥ 3 and l ≥ 2 with k + l > 6, equation (1)
has only finitely many solutions in n, d, b, y. Moreover, we deduced from the ABC-conjecture that under the
conditions d > 1, k ≥ 3 and l ≥ 4, (1) has only finitely many solutions in n, d, k, b, y, l. Jointly with Bennett
and Hajdu we showed that if k ≥ 4 is fixed, then under certain technical assumptions (1) has at most finitely
many solutions in n, d, b, y, l with P (b) < k/2.

For small values of k, we established a more precise result. Namely, we showed that for 3 ≤ k ≤ 11, the
product of k consecutive terms from a positive arithmetic progression is never a perfect power. For k = 3 this
is due to Gy�ory, for k = 4, 5 to Gy�ory, Hajdu and Saradha and for 6 ≤ k ≤ 11 to Bennett, Gy�ory and Hajdu,
respectively. In fact we proved a more general version of this theorem when n and b are non-zero integers and
P (b) < max{3, k/2}.

To prove our results, we reduced first equation (1) to ternary equations of the form

Axl +Byl = Czl or Cz2.

Then we combined several classical and modern results and methods, including Frey curves, Galois representa-
tions and modular forms, to solve the above ternary equations.
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THE INTEGER POINTS CLOSE TO A PLANE CURVE AND RELATED
PROBLEMS

Huxley M.N. (Cardiff)
Huxley@Cardiff.ac.uk

Some problems in number theory can be interpreted as the distribution of a certain set of points with
integer coordinates. We use trigonometric sums for counting the number of integer points inside a closed plane
curve. Some problems require an estimate for the number of integer points in a narrow strip alongside a plane
curve. If the strip is wide, trigonometric sum methods are still useful, and they give an approximate formula.
For a narrow strip we cannot expect an asymptotic formula, so upper and lower bounds are of interest. Lower
bounds, where possible, are by constructions. Upper bounds come from spacing ideas. The simplest spacing idea
is that if there are more than 2A+ 2 integer points in a convex set area A, then they are all on a straight line.
Either there are at most 2A + 2 integer points (a `minor arc' spacing property) or the integer points in the
region satisfy some algebraic equation (a `major arc'). More complicated arguments of this type use interpolation
determinants and differential inequalities. The `depth' is only that of Liouville's approximation theorem, but
working in two dimensions ensures considerable complications.

SMALL DENOMINATORS FOR THE DIRICHLET PROBLEM IN A DISK
Il'kiv V.S. (Lviv, National University "Lvivs'ka politechnika")

dir-ifn@polynet.lviv.ua

In the unit disk K = {(x, y) ∈ R2 : x2 + y2 < 1} the Dirichlet problem is considered: to find the solution
of partial differential equation with constant complex coefficients aj

L
( ∂

∂x
,
∂

∂y

)
u ≡

2m∑
j=0

aj
∂2mu

∂x2m−j∂yj
= 0, (1)

which satisfies on the disk's boundary ∂K the Dirichlet conditions

∂ju

∂νj
(
x, y

)
= ϕj(x, y), j = 0, 1, . . . ,m− 1, (2)

where ϕ0(x, y), ϕ1(x, y), . . . , ϕm−1(x, y) are known functions and ν is an outside normal on ∂K.

The solvability conditions of this problem are established by V. P. Burskii (Investigation methods of bound-
ary value problems for general differential equations, Kyiv, Naukova dumka, 2002, 315 p.) and by E. A. Bur-
jachenko.

In particular, if the roots λj of polynomial L(1, λ) are simple and not equal to ±i, then det δn 6= 0 for all
integer n ≥ 2m, where matrix

δn =


cos nϕ1 sin nϕ1 . . . cos(n− 2m + 2)ϕ1 sin(n− 2m + 2)ϕ1

cos nϕ2 sin nϕ2 . . . cos(n− 2m + 2)ϕ2 sin(n− 2m + 2)ϕ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cos nϕ2m sin nϕ2m . . . cos(n− 2m + 2)ϕ2m sin(n− 2m + 2)ϕ2m


and complex angle ϕj satisfies the equation tanϕj = −λj , is a necessary and sufficient condition for uniqueness
of the solution of the problem (1), (2). Analogous conditions are established in the case when λj is a multiple
root and/or ±i is a root of the polynomial L(1, λ).

For m = 1 the uniqueness criterion of the solution of the problem (1), (2) is π-irrationality of the number
ϕ2 − ϕ1. For m > 1 π-irrationality of at least one of the numbers ϕ2 − ϕ1, ϕ3 − ϕ1, . . . , ϕ2m − ϕ1 is the neces-
sary uniqueness condition. Non-uniqueness condition can be formulated in such way: there exists a nontrivial
polynomial h(λ) Of the degree not higher than n − 2m and polynomials h+(λ) and h−(λ) of the degree not
higher than m− 1, for which the identity L(1, λ)h(λ) + (λ+ i)n−m+1h+(λ) + (λ− i)n−m+1h−(λ) ≡ 0 holds.

If Sn is a matrix with the i-th column formed by the coefficients of the polynomial
L(1, λ)λn−2m+1−i, and Sn± is a matrix with the i-th column formed by the coefficients of the polynomial
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(λ± i)n−m+1λm−i, then the uniqueness condition consists in nondegeneration of the matrix (Sn, Sn+, Sn−) for
all integer n ≥ 2m.

To obtain the existence of a solution of the problem (1), (2) in the scales of functional spaces it is sufficient
to estimate the norm of reciprocal matrix δ−1

n . For this we have to estimate the determinant of matrix δn, which
has ∆n = det(Sn, Sn+, Sn−) as its multiplier. Numbers ∆n can take as small values as desired for infinite number
set n. The problem of estimating of this denominators consists in proving the lower estimates |∆n| ≥ Cρn for
almost all coefficients of the polynomial L(1, λ), where the constant C is independent from n, and function ρn
is independent from the coefficients of the polynomial L(1, λ).

BENFORD'S LAW AND RATIONAL APPROXIMATIONS OF
LOGARITHMS OF REAL NUMBERS

Kalosha N. (Minsk, Belarus)
kalosha@im.bas-net.by

If the initial zeros are skipped, the decimal representation of any number begins with one of the nine digits,
a = 1, 2, . . . , 9. For most statistical data, the distribution of those digits isn't uniform, but instead each digit a
occurs with a frequency close to

lg
a+ 1
a

. (1)

This observation is due to Simon Newcomb [1], an astronomer and mathematician. Later, Benford published
the results of a more in-depth study [2], giving a number of real-life examples where the distribution defined by
(1) is found. Thus, it became know as Benford's law.

Let {x} denote the fractional part of a real number x. Consider the sequence 2n, n = 1, 2, . . . . The distri-
bution of the first digits in it depends on the distribution of the numbers {n lg 2}, which is uniform since the
number lg 2 is irrational. Thus, it follows Benford's law. Moreover, the divergence between the actual propor-
tion of different digits and the values given by (1) depends on the measure of irrationality of lg 2 and it can be
estimated as follows.

Lemma 1. Let ∣∣∣∣α− p

q

∣∣∣∣ > c(α)q−λ, λ ≥ 2. (2)

hold for some irrational α and all integers q > 0 and p. Then

L∑
ν=1

1
‖να‖

≤ c1(α)Lλ−1 lnL, (3)

holds for any integer L > 8 with c1 = 2λ+1

c(α) .

Thus we obtain the following theorem:

Theorem 1. Let B(A,Q) be a number of integers n, 1 ≤ n ≤ Q, such that the decimal representation of 2n

begins with A. For all ε > 0 the following asymptotic estimate is true

B(A,Q) = Q lg
A+ 1
A

+O(Q1− 1
λ0−1+ε), (4)

where λ0 ≥ 2 is a positive real number such that the inequality∣∣∣∣lg 2− p

q

∣∣∣∣ > cq−λ0 , λ ≥ 2

holds for some positive constant c and all integers q > 0 and p.

This theorem can be immediately translated into a result for 2n by using the known fact that λ0 can be
taken to be equal to 242.
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Theorem 2. Let pk be the k-th prime; for any positive integers A1, A2, . . . , Ak let B(A1, . . . , Ak, Q) be the
number of integers n, 1 ≤ n ≤ Q, such that the decimal representation of 2n begins with A1, the decimal
representation of 3n begins with A2, etc. There exists a µ1, 0 < µ1 < 1, such that for all ε1, 0 < ε1 < 1 − µ1

and Q→∞ the following asymptotic expression is true

B(A1, . . . , Ak, Q) = Q
k∏
s=1

lg
As + 1
As

+Oε1(Q
µ1+ε1) (5)

It is obvious that the numbers p1, . . . , pk don't have to be primes, and the linear independence of their
decimal logarithms is the necessary and sufficient condition for (5).

Finally, it is possible to further extend the problem by considering the decimal representation of the numbers
in the sequence from (s+ 1)-th position, counting from the beginning. The we have

Theorem 3. For Q→∞ we have

B
(s)
2 (Q) = Qνs(A1) +Oε(Q

1− 1
λ0−1+ε), (6)

where the constant which is implicitly present in the Vinogradov symbol is 9 ·10s−1 bigger then one in Theorem
1.

However, experimental evidence shows that this constant can be improved, which is supported by the
following lemma.

Lemma 2. Consider irrational β such that the inequality (2) holds for all (p, q) ∈ Z×N. For all integer M > 1,
S ≤M , and all real a and b, 0 < b− a < M−1 and

V =
S⋃
j=0

[
a+ jM−1, b+ jM−1

)
we have

NV (β,Q) = |V |Q+Oε

(
Q1− 1

λ−1 lnQ
)
,

where the constant in the Vinogradov symbol is not larger than

22λ+10 lnM
(

1
c(Mβ)Mλ−2

+
1

c(β)

)
.

Finally, we can replace the natural number a by any real number. Let

lg a1 =
√

5− 1
2

, lg a2 =
√

2, lg a3 = e, lg a4 = π

and let Baj
(Q), 1 ≤ j ≤ 4 be the number of integer n, 1 ≤ n ≤ Q, such that anj begins with a natural number

A. Using known results on the approximations of lg aj , we obtain the following theorem.

Theorem 4. When Q→∞ we have

Ba1(Q) = Q lg
A+ 1
A

+O(lnQ) (7)

Ba2(Q) = Q lg
A+ 1
A

+O(lnQ) (8)

Ba3(Q) = Q lg
A+ 1
A

+O(ln2Q) (9)

Ba4(Q) = Q lg
A+ 1
A

+O(Q
5
6 ) (10)

For almost all a and any ε > 0 we have

Ba(A,Q) = Q lg
A+ 1
A

+O(ln2+εQ) (11)
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Take m1 = 10x, . . . ,mk = 10x
k

. By using a metrical estimate of the values of integer polynomials [8] and
taking B′(A1, . . . , Ak, Q) to be equal B(A1, . . . , Ak, Q), similarly to theorem 4, with pj replaced by mj , we
obtain

Theorem 5. For almost all x and any δ > 0 we have

B′(A1, . . . , Ak, Q) = Q

k∏
s=1

lg
As + 1
As

+Oδ(lnk+δ Q)

The authors would like to thank Yu. Prokhorov, Yu. Nestrenko, A. Dubickas and F. Goetze for a number
of valuable remarks.
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THE DISTRIBUTION OF RATIONAL POINTS NEAR a HYPERBOLIC
PARABOLOID

Kaluguina M.A. (Minsk, Belarus)

The question of the distribution of rational points in domains of n-dimensional Euclidean spaces is one of
the central problems of the number theory. Just problems connected with the distribution of rational points in
domains where one of dimensions approximates to zero as soon as denominator of rational numbers increases
are very popular now owing to numerous applications

At present exact upper and lower bounds for the cardinality of rational points near to planar curves are
known M. Huxley gave the following estimate:

let f ∈ C(3)(a, b), c−1 < |f ′′(x)| < c for all x ∈ (a, b), where c > 0 is constant and 0 < µ < 1, let
Hµ
f (Q) = {(p1q ,

p2
q ) ∈ Q2 : p1q ∈ (a, b), 0 < q 6 Q, |f(p1q ) − p2

q | < q−µ−1} then for any ε > 0 for all sufficiently

large Q one has |Hµ
f (Q)| 6 Q2−µ+ε.

Further Beresnevich V.V. proved [2] the theorem giving the complementary lower bound.

Let I0 be an open interval, f ∈ C3(I0) and f(x) 6= 0 for all x ∈ I0. Let S ⊂ N be an infinite subset and
ψ : N → R+ be a function satisfying

lim
t→+∞,t∈S

ψ(t) = lim
t→+∞,t∈S

1
tψ(t)

= 0

Let Bf (Q,ψ, I) = {(p1q ,
p2
q ) ∈ Q2 : p1

q ∈ I, 0 < q 6 Q, |f(p1q ) − p2
q | <

ψ(Q)
Q } then for any interval I ⊂ I0

there is a constant c1 > 0 such that one has

|Bf (Q,ψ, I)| > c1Q
2ψ(q)|I|

for all sufficiently large Q ∈ S. In particular, if I0 is finite then taking ψ(Q) = Q−µ with 0 < µ < 1 gives
|Hµ

f (Q)| > c1Q
2−µ|I0|.
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Here generalizing for the 3-dimensions Euclidean space one has a more difficult and interesting problem. In
particular, one can estimate the cardinality of rational points near a surface z = xy, where z : R2 → R.

Let ε > 0, δ > 0, I = I1 × I2 ⊂ r2, p1, p2, p3, q ∈ Z, 0 < q 6 Q.

Let

I1 = {x ∈ R : |x− p1

q
| < Q−

4
3+ε

δ
},

I2 = {y ∈ R : |x− p2

q
| < Q−

4
3+ε

δ
},

A(Q, I, δ) = {(p1

q
,
p2

q
,
p3

q
) ∈ Q3 : |p1p2

q2
− p3

q
| < 2

δ
H− 4

3−2ε}.

Then |A(Q, I, δ)| > δ2

2 Q
8
3−2ε|I1||I2|.
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ON SOME ARITHMETIC PROPERTIES OF CONSTANTS RELATED TO
THETA FUNCTIONS

Kholyavka Ya.M. (Lviv National University, Ukraine)
ya_khol@franko.lviv.ua

Many results about arithmetic properties of the elliptic functions [1,2] can be translated into the language
of theta functions [3]. Here we present some of them.

We denote by ξi (i = 2, 3, 4) the approximating algebraic numbers; by ni and Li the degree and the length
of these numbers, n = deg Q(ξ2, ξ3, ξ4), L = 1 + lnL2

n2
+ lnL3

n3
+ lnL4

n4
.

We will use the following notation for theta functions

θ2 = 2q1/4
∑
n≥0

qn(n+1), θ3 = 1 + 2
∑
n≥1

qn
2
,

θ4 = 1 + 2
∑
n≥1

(−1)nqn
2
, q = exp(πiτ).

Theorem 1. Let T = n(L min(n2, n3, n4) + lnn). Then
4∑
i=2

|πθi − ξi| > exp(−ΛnT lnT ),

where Λ is some effective constant.

This result is a consequence of Theorem 1 [4] (for ω1 = 1) and the relations between the theta functions
and elliptic functions [3].
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JOINT APPROXIMATION OF ZERO BY VALUES OF INTEGER
POLYNOMIALS IN R2 × C2

Korlyukova I. (Grodno, Belarus)
korlyukov@grsu.grodno.by

Suppose that Pnx = anx
n + . . .+ a1x+ a0 is a polynomial with integer coefficients aj , H = max1≤j≤n |aj |

is the height of P (x).
In 1965 V.G. Sprindzhuk established a hypothesis, according to which one the system of inequalities{

|Pn(x)| < H−w

|Pn(x)| < H−w (1)

has at w > n−1
2 only a finite number of solutions for almost all (x, y) ∈ R. This hypothesis was proved in [1].

In [2] a generalization of this result for this approximations in different metrics was obtained, the theorem with
an arbitrary monotonically decreasing function ϕ(H) in the right-hand side of (1) and with some condition on
convergence of a number bound with ϕ(H) was proved in [3]. We proved the theorem extending the basic result
in [3].

Theorem 1. Let
λj ≥ −1, µj ≥ 0, 1 ≤ j ≤ 4, λ1 + λ2 + 2λ3 + 2λ4 = n− 6,

µ1 + µ2 + 2µ3 + 2µ4 = 1,
assume that the function ψ(H) monotonically decreases, and

∑∞
H=1 ψ(H) <∞. Then the system of inequalities

|Pn(x1)| < H−λ1ψµ1(H)
|Pn(x2)| < H−λ2ψµ2(H)
|Pn(z1)| < H−λ3ψµ3(H)
|Pn(z2)| < H−λ4ψµ4(H)

has only a finite number of solutions for almost all (x1, x2, z1, z2) ∈ R2 × C2.

DIOPHANTINE APPROXIMATION WITH RESPECT TO DIFFERENT
VALUATIONS

Kovalevskaya E. (Minsk, Belarus)
kovalevsk@im.bas-net.by

Let Pn = Pn(y) = any
n+· · ·+a1y+a0 ∈ Z[y], degPn = n andH = H(Pn) = max0≤i≤n |ai|. Let ψ : N → R+

be a monotonically decreasing function and
∑∞
n=1 ψ(n) <∞. Let p ≥ 2 be a prime number, Qp be the field of

p-adic numbers, | · |p be the p-adic valuation.
V.Sprind�zuk (1965) proved Mahler's problem for Pn in the fields R, C and Qp. Later some generalizations

of the convergence part of the Khintchine theorem (1924) were obtained for polynomials Pn. V.Bernik (1989),
D.Vasiliyev (1998) and E.Kovalevskaya [1] proved results of this type for R, C and Qp respectively. We prove
an analogue of the convergence part of the Khintchine theorem for simultaneous approximation of zero in
R×C×Qp by values of polynomials Pn. We notice that the problem under consideration belongs to the metric
theory of Diophantine approximation of dependent values.

Further, we define a measure in R×C×Qp as a direct product of the Lebesgue measures in R, C and the
Haar measure in Qp. We consider the system of inequalities

|Pn(x)| < Hλ1ψν1(H),
|Pn(z)|2 < H2λ2ψ2ν2(H),
|Pn(ω)|p < Hλ3ψν3(H),

(1)

where (x, z, ω) ∈ R×C×Qp, λi ≤ 1 (i = 1, 2), λ3 ≤ 0, λ1+2λ2+λ3 = n−3, νi ≥ 0 (i = 1, 2, 3), ν1+2ν2+ν3 = 1,
λi − νi < 1 (i = 1, 2), λ3 − ν3 < 0.

Theorem 1. The system of inequalities (1) is satisfied by at most finitely many polynomials Pn ∈ Z[y] for
almost all (x, z, ω) ∈ R× C×Qp.
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In order prove the theorem we develop Sprind�zuk's method of essential and inessential domains and use a
proof scheme from [2].
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ON CARDINALITY MEASURE OF THE SET OF POLYNOMIALS WITH
BOUNDED VALUE OF DISCRIMINANTS

Kukso O.S. (Minsk, Belarus)

Relationship between the value of an integer polynomial at a given point and the distance between this point
and the nearest root of the polynomial is of great importance in the metric theory of transcendente numbers.
If the derivative of the polynomial at the root is small then this distance can be considerable. Then we have to
estimate the number of polynomials with a small derivative if we want to obtain an exact result (see [1]).

Let P (x) ∈ Z[x], degP 6 n, H = H(P ) be the hight of this polynomial. Let us denote by F(Q) for some
p > 0 and µ > 0 the class of polynomials for which there exists a point x ∈ R, such that the following inequalities
are satisfied {

|P (x)| < H−µ

|P ′(x)| < H1−p, H(P ) 6 Q

Baker's result [2] was that

|F| � Qn+1−p, p < 1,

while we can improve it for p < 1
2 , obtaining that

|F| � Qn+1−2p, p < 1/2,
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ON SOME PROBLEM OF V.G. SPRINDJUK
Kuznetsov V.N., Vodolazov A.M. (Saratov, SSU)

VodolazovAM@info.sgu.ru, KuznetsovVN@info.sgu.ru

In the paper [1] V.G. Sprindjuk has posed a problem related to the analytic characterization of Dirichlet
L-functions in the class of Dirichlet series admitting an analytic continuation to the complex plane as integral
functions of first order. This problem has not been solved up to now and can be formulated in the following
way:

Suppose a Dirichlet series

f(s) =
∞∑
1

an
ns
, s = σ + it (1)

can be continued to an integral function on the complex plane and the function f(s) satisfies the condition of
growth of absolute value

|f(s)| < ce|s| ln |s|+A|s| (2)
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on the left half-plane σ < 0, where A is some constant. Furthermore assume that the values of this function at
zeroes of Riemann's zeta-function do not increase too fast in the critical strip, more precisely, there exists η > 0
such that ∑

ρ

|f(ρ)|e−τ |ρ| = 0(τ−n)

as τ → 0, where ρ runs over all nontrivial zeros of zeta-function.

It is required to prove that in this case the function f(s) must be a Dirichlet L-function.

The authors obtained the following analytic criterion of a Dirichlet L-function in the class of Dirichlet series.
This criterion can be useful in the solution of V.G. Sprindjuk's problem.

Theorem 1. For a Dirichlet series of the form ([1]) with finite-valued, fully multiplicative coefficients the
following conditions are equivalent:

1) an are periodic, and consequently Dirichlet series ([1]) is a Dirichlet L-function;
2) on the half-plane σ > 1 the function f(s) admits an approximation by Dirichlet polynomials

Tnk
(s) =

nk∑
n=1

cn
ns
, s = σ + it

with degree of approximation 0( 1
ρnk

), where ρ > 1.

Remark The sequence of Dirichlet polynomials {Tnk
(s)} converges uniformly on any bounded domain in

the complex plane, i.e. it determines an analytic continuation of the function f(s). Moreover, f(s) satisfies
condition (2).
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SOME ANALYTIC PROPERTIES FOR L-FUNCTIONS OF ELLIPTIC
CURVES

Laurin�cikas A. 1 (Vilnius University, �Siauliai University)

Let E be an elliptic curve given by the equation y2 = x3 + ax + b, a, b ∈ Z, with discriminant ∆ =
−16(4a3 + 27b2). Suppose that ∆ 6= 0, then the curve E is non-singular. For each prime p denote by ν(p) the
number of solutions of the congruence y2 ≡ x3 + ax+ b(mod p), and let λ(p) = p− ν(p). H. Hasse proved that
|λ(p)| < 2

√
p. Moreover, he and H. Weil attached to the curve E the L-function defined by the following Euler

product

LE(s) =
∏
p-∆

(
1− λ(p)

ps
+

1
p2s−1

)−1 ∏
p |∆

(
1− λ(p)

ps

)−1

, s = σ + it.

The latter product converges absolutely for σ > 3/2. Recently, the Hasse conjecture was proved, therefore
the function LE(s) has analytic continuation to an entire function. Also, by the Shimura�Taniyama conjecture
which was partially proved by A. Wiles, and in full form by C. Breuil, B. Conrad,F. Diamond and R. Taylor,
the function LE(s) is the L-function attached to certain newform of weight 2 of some Hecke subgroup.

In the report we consider the universality of the function LkE(s), where k 6= 0 is an integer number (the
case of negative k uses an analog of RH for LE(s)), and the functional independence of LkE(s). For example,
for k > 0 we have the following statement. Let K be a compact subset of the strip {s ∈ C : 1 < σ < 3/2}
with connected complement, and let f(s) be a continuous non-vanishing function on K which is analytic in the
interior of K. Then, for every ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : |Lk(s+ iτ)− f(s)| < ε

}
> 0.

1Partially supported by grant from Lithuanian Foundation of Studies and Sciences
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The case k = 1 has been obtained in [1].
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SOME GENERALIZATIONS OF UNIFORMLY DISTRIBUTED SEQUENCES
AND THEIR APPLICATIONS

Leonov N.N.

Let (X, d) be a compact metric space, P be a probability measure on the σ-algebra of Borel subsets of X.
A sequence x1, x2, ... ∈ X is called P -uniformly distributed if

lim
n→∞

1
n

n∑
i=1

u(xi) =
∫
X

u(x)P (dx)

for any continuous real function u. Thus, such a sequence represents the measure well in the certain sense.
However, in applications we often need a finite set that represents the measure better than any other set with
the same power. This leads to the following problem: find a set

Y ∗n = arg min
Y={x1,...,xn}

φ(Y )

for various forms of the criterion φ. For instance, in the theory of quadrature formulas and classification theory
respectively

φ(Y ) = sup
u∈K

∣∣∣∣∣∣ 1
n

n∑
i=1

u(xi)−
∫
X

u(x)P (dx)

∣∣∣∣∣∣ , φ(Y ) =
∫
X

d(x, Y )P (dx)

are used, where K is some function class and d(x, Y ) = inf
y∈Y

d(x, y). We propose some non-traditional criteria.

Sometimes the optimal sets Y ∗n are segments of the same sequence for all n. In particular, one meets such a
situation in some problems for non-Archimedean metric spaces. We give various examples of applications to
database analysis, mathematical sociology, and other. Some aspects of computer realization are discussed.

ON THE APPROXIMATION BY DESCRETE BIORTHOGONAL SERIES
Maisenia L.I. (Minsk, Belarus)

Let µ(n), n ∈ N, be M�obius function, χ1(ν, k), χ2(ν, k), ν ∈ Z, k ∈ N, be real primitive Dirichlet residue
characters modulo k; f(t) be 1-periodic continuous function.

We make a conversion of Fourier series

f(t) ∼
∞∑

m=−∞
cme

2πimt

into a series with descrete coefficients:

f(t)− c0 ∼
∞∑
n=1

sn(f, t;χ1, χ2), (1)

where
sn(f, t;χ1, χ2) = In(f ;χ1)gn(t;χ1) + iIn(f ;χ2)hn(t;χ2),

In(f ;χ1(2)) =
1

nτ(χ1(2))

kn∑
ν=1

χ1(2)f(
ν

kn
),

τ(χ1(2)) =
k∑
r=1

χ(r)e2πi
r
k ,
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gn(t;χ1) =
∑
d|n

µ(
n

d
)χ1(

n

d
) cos 2dπt

hn(t;χ2) =
∑
d|n

µ(
n

d
)χ2(

n

d
) sin 2dπt, n ∈ N.

Sufficient conditions of convergence of the series (1) are obtained.

Theorem 1. Let
+∞∑

m=−∞
ρm|cm| <∞,

where

ρm = 21+δ ln em
ln ln em

, δ > 0.

Then

(1) the series (1) is absolutely and uniformly convergent;
(2) the estimate

|f(t)− c0 −
k∑

n=1

sn(f, t;χ1, χ2)| �
∫ 1

k

0

ε
3
2 ρ(

1
ε
)ω(f ; ε)dε

is true, where ω(f ; ε) is modulus of continuity.

ESTIMATION OF THE TOTAL NUMBER OF THE RATIONAL POINTS ON
A SET OF CURVES IN SPECIAL CASES

Mitkin D.A. (Moscow, MPGU)
damitkin@mail.ru

Let p be a prime, k and l be positive divisors of p− 1, h = (p− 1)/k, r = (p− 1)/l. For n = h, r we denote

µn = {x ∈ Zp| xn = 1}

and Mn is a set of distinct coset representatives of µn in Z∗p .

Under the influence of the paper [1] the author proved the inequality∑
(u,v)∈U

|{(x, y) ∈ µh × µr| ux− vy = 1}| � (hrT 2)1/3

for an arbitrary set U ⊂Mh×Mr, if T = |U | satisfies the conditions h2r2T < p3 and T (min(h, r))2 > max(h, r).

In the particular case k = l such assertion was proved and applied for estimating of Gauss sums by D.R.
Heath-Brown and S.V. Konyagin.

References

[1] D.R. Heath-Brown and S. Konyagin, New Bounds for Gauss Sums Derived From k-th Powers and for
Heilbronn's Exponential Sum, Quart. J. Nath., 51(2000), 161-188.

ON A LINEAR THEOREM OF SYLVESTER
Mitkin D.A. (Moscow, MPGU)

damitkin@mail.ru
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Let a, b be positive integers, (a, b) = 1. J.J. Sylvester [1] proved that the greatest integer which can't be
represented as ax+ by with nonnegative integers x, y is

ab− a− b .

This result may be easily generalized as follows. Let a1, . . . , an be pairwise coprime positive integers, n ≥ 2,
A = a1 . . . an, Ai = A/ai. Then the greatest integer which isn't represented as A1x1 + . . . + Anxn with
nonnegative integers x1, . . . , xn is equal to

(n− 1)A−A1 − . . .−An .

For n = 3 it was given as a problem at a student competition in mathematics. From here it follows that
any positive integer which can't be represented as A1x1 + . . . + Anxn with nonnegative integers x1, . . . , xn is
represented in a form

kA− k1A1 − . . .− knAn ,

where k, k1, . . . , kn are positive integers, k ≤ n− 1, and the inverse assertion is also true.
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ON THE REPRESENTATION OF PRIMES BY POLYNOMIALS (A SURVEY
OF SOME RECENT RESULTS)

Moroz B.Z. (Max-Planck-Institut f�ur Mathematik, Bonn)

About five years ago J. Friedlander and H. Iwaniec [1, 2] proved that there are infinitely many primes of
the form x2 + y4. Inspired by their work, but by a totally different method, D.R. Heath-Brown [3] shows that
the binary cubic form x3 + 2y3 represents infinitely many prime numbers, thereby confirming the conjecture
of G.H. Hardy and J.E. Littlewood on the infinity of primes expressible as a sum of three cubes. Subsequently
it has been shown [4] that any irreducble primitive binary cubic form with integral rational coefficients takes
infinitely many prime values, if it takes at least one odd value. Indeed, we prove [5] an analogous theorem even
for certain binary non-homogeneuos cubic polynomials. I intend to survey some of the ideas behind the proof
of these results.
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ON UPPER ESTIMATION OF THE MEASURE OF A RATIONAL NUMBER
SET GENERATED BY SCHMIDT CURVE

Morozova I.M. (Minsk, Belarus)

Let I = [a; b] be an interval, f1(x), f2(x) ∈ C3[a; b] and the curvature of the curve Γ2 = (f1(x), f2(x)) be
nonzero almost everywhere. In 1964 V. Schmidt [1] proved that for any ε > 0 the inequality

|F2(x)| = |a2f2(x) + a1f1(x) + a0| < H−2−ε, (1)

H = max
06j62

|aj |

has infinitely many solutions only for the set of zero measure.
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In [2] the inequality (1) was generalized for curves Γn = (f1(x), . . . , fn(x)) with the right-hand side of the
inequality given as H−n+1Ψ(H).

Now for a monotone decreasing function Ψ(H) everything depends on convergence or divergence of∑∞
H=1 Ψ(H). In [3] they put H−w as the right-hand side and for w > 2 found the exact value of Hausdorff

measure for the set of solutions of the obtained inequality.

Nowadays a generalization of the theorem from [3] for any n is of great interest. One of the possible ways
to obtain it is to find the exact estimate of the measure of those x, for which Fn(x) < Q−w, w > n is true. This
estimate holds at least for one collection (a0, a1, . . . , an) and is obtained in [4] for n < w < n

4n2+2n−4 . If n = 2,
then 2 < w < 2 1

8 . It will be proved in the report, that 1
8 can be replaced by 1

2 .
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MULTI-DIMENTIONAL DIOPHANTINE APPROXIMATIONS
Moshchevitin N.G. (Moscow, MSU)

moshche@mech.math.msu.ru

A brief survey on classical and recent results dealing with the general laws of Diophantine approximations
will be presented in the lecture. The following topics are going to be considered.

(1) Evaluation of some Diophantine constants;
(2) Exponents of growth for the best Diophantine approximations;
(3) Phenomena of the degenerate dimension of subspaces generated by the best Diophantine approxima-

tions;
(4) Distribution of the directions of approximations;
(5) Vectors with a given Diophantine type.

ON POLYNOMIALS WITH SMALL DENOMINATORS
Pereverzeva N.A. (Grodno, Belarus)

Let Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 be a polynomial with integer coefficients and

H = H(P ) = max
06j6n

|aj |

be it's height. The subject of Diophantine approximations is studying of sets Mn(ω) of x ∈ R such that
the inequality |Pn(x)| < H−ω has infinitely many solutions in polynomials P (x) where ω is fixed. For fixed
x the exponent ω characterizes the measure transcendence of x. If |P ′(x)| << H, then all metric problems
concerningMn(ω) can be easily solved. But as |P ′(x)| decreases, it becomes necessary to estimate the frequency
of appearance of the polynomials with a small derivative. Let Fn(Q) denote the class of polynomials Pn(x) for
which there is at least one point x, at which the following system of inequalities holds

|Pn(x)| < Q−ω, ω > 0
|P ′n(x)| < Q−υ,

H(P ) 6 Q.

To solve the Baker-Schmidt problem about Hausdorff dimension of the set Mn(ω), ω > n the estimate
#Fn(Q) << Qn+1−0,1υ was obtained (see [1]). In [2], the equality #Fn(Q) << Qn+1−υ was proved for 0 6 υ <

1. Earlier it was found out that for 0 < υ < n/2 one has #Fn(Q) << Qn+1−0,5υ.
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Theorem 1. For n 6 5 and 0 < υ < 5
2 the following inequality is satisfied

#Fn(Q) << Q6−0,6υ.
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ON THE EQUATION 1k + 2k + . . . + xk = yz

Pinter A. (Debrecen)
pinterak@freemail.hu

We give a survey talk on the power values of power sums including some recent results obtained by Bennett,
Gy�ory, Jacobso, Walsh and the speaker.

SMALL DENOMINATORS IN MULTIPOINT PROBLEMS FOR PARTIAL
DIFFERENTIAL EQUATIONS

Ptashnyk B.Yo., Symotyuk M.M. ( Lviv, PIAPMM NASU)
ptashnyk@lms.lviv.ua

Let λj(k), k∈Zp, j = 1, . . . , n, be the roots of equation λn +
n−1∑
j=0

An−j(k)λj = 0,

Aj(k) =
∑
|s|≤Nj

Asjk
s1
1 . . . ksp

p , Asj ∈ C, Nj ∈ N, j = 1, . . . , n; (1)

C(n,m), 1 ≤ m ≤ n, be the set of all ω = (i1, . . . , im) ∈ Zm, where 1 ≤ i1 < . . . < im ≤ n; Λω(k)=
m∑
j=1

λij (k),

where ω = (i1, . . . , im)∈C(n,m).

Investigating a solvability of multipoint problems for partial differential equations such small denominators
arise:

∆(k) = det
∥∥λqj−1

q (k) exp(λq(k)tj)
∥∥q=1,n

qj=1,rj ;j=1,l
,

0 ≤ t1 < . . . < tl ≤ T, k ∈ Zp,

Γω(k) =
∏

m≥j>q≥1

(λij (k)− λiq (k)), ω = (i1, . . . , im) ∈ C(n,m), k ∈ Zp,

Pj(k) =
∏

ω ∈ C(ρj , rj), ω 6= ωj

(
Λωj

(k)− Λω(k)
)
, j = 1, . . . , l − 1, k ∈ Zp,

where l ≤ n, r1+. . .+rl = n, ωj = (ρj+1+1, ρj+1+2, . . . , ρj+1+rj) ∈ C(ρj , rj), ρj = rj+. . .+rl, j = 1, . . . , l−1.

Let ΠN (ρ) = {~z ∈ CN : max
1≤j≤N

|zj | ≤ ρ}, ρ > 0, ~Y ≡ (~y1, . . . , ~yp) ∈ Cnp, where ~yq = (As1,q

1 , . . . , A
sn,q
n ) ∈ Cn,

q = 1, . . . , p, sj,q = (0, . . . , 0, Nj , 0, . . . , 0) is multiindex of the length p, on the q-th position of which Nj is

present; ~U is a vector formed by coefficients Asj in (1), which are not a components of the vector ~Y .

For all fixed vectors ~U the next propositions are hold, where constants θj , ψj , ω, δ, γ are determined in
explicit form by p, n, r1, . . . , rl, ρ,N1, . . . , Nn, T .

Theorem 1. For almost all (with respect to the Lebesgue measure in Cnp) vectors ~Y ∈ Πnp(ρ) the inequal-
ities

|Γωj
(k)| ≥ |k|−θj−ε, j = 1, . . . , l,

|Pj(k)| ≥ |k|−ψj−ε, j = 1, . . . , l − 1, ε > 0,

are satisfied for all (with the except of finite number) vectors k ∈ Zp.
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Theorem 2. For almost all (with respect to the Lebesgue measure in Cnp) vectors ~Y ∈ Πnp(ρ) and for
almost all (with respect to the Lebesgue measure in Rl) vectors ~t = (t1, . . . , tl) ∈ [0, T ]l the inequality

|∆(k)| > (1 + |k|)−ω exp(−δ|k|γ)
is satisfied for all (with the except of finite number) vectors k ∈ Zp.

SPECTRUM OF ADELIC VLADIMIROV OPERATOR
Radyna Ya., Radyno Ya. (Minsk, Belarus)

Yauhen_Radyna@tut.by

The group of adeles is of great interest in number theory. It can be used, for example, to understand better
the nature of Riemann zeta.

An adele x ∈ A is a sequence x = (x∞, x2, x3, x5, ..., xp, ...) = (xν), where the ∞ symbol stands for the
usual modulus, the primes p stand for non-archimedean p-adic valuations of Q, and each xν belongs to the
corresponding completion Qν , Q∞ = R.

Define expression |x|α with an infinite multi-index α = (α∞, α2, α3, ..., αp, ...) , αν ∈ R, as the infinite
product

|ξ|α = |ξ∞|α∞∞ · |ξ2|α2
2 · |ξ3|α3

3 · ... · |ξp|αp
p · ... .

Theorem 1. Let αp log p → 0 as p → ∞, αν > −1/q for all ν, 1 ≤ q < +∞. Then |ξ|α represents a function
on A which is finite almost everywhere, |ξ|α ∈ Lloc

q (A).

The standard Fourier transformation defined on the space S(A) of Schwartz�Bruhat functions can be
continued onto L2(A) ⊃ S(A), where it is a linear isometry.

Note. The space S(A) of Schwartz�Bruhat functions is just a tensor product S(A) = S(R) ⊗ S(A0) of
the Schwartz space on R and the Schwartz�Bruhat space on the group of finite adeles (i.e. adeles without the
archimedean component x∞). The product is complete with respect to Grothendieck topology. The space S(A0)
is an inductive limit of finite dimensional spaces.

Definition. Let αp log p → 0, αν > −1/2. The pseudodifferential Vladimirov operator Vα in L2(A) with
domain D(Vα) = S(A) is defined as

Vαψ = F−1[|ξ|α(Fψ)(ξ)].

Theorem 2. The operator Vα with the domain D(Vα) is essentially self-adjoint. Its closure (also defined as
Vα again) with the domain

D(V α) = {ψ ∈ L2(A) : |ξ|α(Fψ)(ξ) ∈ L2(A)}
is self-adjoint and its spectrum is [0,+∞).

COLOURING THE ERD�OS UNIT-DISTANCE GRAPHS
Raigorodskii A.M. (Moscow, LMSU)

araigor@avangard.ru

In our talk, we shall discuss the following classical combinatorial question going back to P. Erd�os and H.
Hadwiger (1940 - 1950): what is the minimum number of colours needed to paint the entire Euclidean space Rn
in a way such that any two points at the distance exactly equal to one have distinct colours? In other words,
what is the chromatic number χ(Rn) of Euclidean space defined as the chromatic number of the infinite graph
(the so called Erd�os unit-distance graph) whose vertex set is Rn and whose edge set is formed by all pairs
x, y ∈ Rn such that |x− y| = 1?

Various results have been obtained in connection with the above-mentioned question. For instance, it is
known that 4 ≤ χ(R2) ≤ 7 and that (1.239...+ o(1))n ≤ χ(Rn) ≤ (3 + o(1))n. The asymptotic upper bound is
due to D.G. Larman and C.A. Rogers (1972) and the corresponding lower one was discovered by the author in
2000. The problem of improving the latter lower bound seems to be very hard. One of the most far-reaching
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approaches for solving it is in considering some special finite subgraphs of the unit-distance graph and in
estimating their chromatic numbers from below with the help of linear algebra and number theory techniques.
Recently we succeeded in developing a new method for doing that in the case when the vertex set of such a
finite graph has a prescribed arithmetic coordinate structure.

In the talk, we shall first give a historical overview of the problem. Then we shall proceed to exhibiting our
new results, and finally we shall discuss some possible extensions and applications of our method.

DIOPHANTINE APPROXIMATIONS IN THE FIELD OF REAL AND
COMPLEX NUMBERS AND HAUSDORFF DIMENSION

Sakovich N.V. (Mogilev, Belarus)

Let L1(ω) be the set of real numbers for which inequalities

|α− p/q| < q−ω1−1 or |αq − p| < q−ω1

have infinitely many solutions in integer p and natural q. Yarnik and Besikovitch found out that the Hausdorff
dimension of L1(ω) equals 2

ω1+1 when ω > 1. This result was generalized for polynomials of arbitrary degree.

Let Ln(ω) denote the set of x ∈ R such that the following inequality has infinitely many solutions in integer
polynomials P (x) ⊂ Z[x]:

|Pn(x)| = |anxn + · · ·+ a1x+ a0| < H−ωn , H = max
06j6n

|aj |

In [1] a lower estimate for dim Ln(ωn) when ω > n is obtained, and V. Bernik obtained an upper estimate (see
[2]). Based on their works we can conclude that dim Ln(ωn) = n+1

ω+1 if ωn > n.

Earlier the generalization was obtained for the case of complex numbers.

The following generalization of the mentioned results for simultaneous approximations in R × C has been
proved.

Let Sn(ω) denote the set (x, z) ∈ R× C, such that the system of inequalities

max(|Pn(x)|, |Pn(z)|) < H−ω

has infinitely many solutions in Pn(t) ∈ Z[t].

Theorem 1. There exists a constant c that doesn't depend on n such that if n > 3 and ω > n−2
3 then

dimSn(ω) < c
n+ 1
ω + 1
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DIOPHANTINE APPROXIMATIONS ON AN n-DIMENSIONAL SPHERE
Selinger N., Zhihovich M. (Minsk, Belarus)

selinger_nikita@tut.by
maksim_zhihovich@mail.ru

Let Sn = {x ∈ Rn| |x| = 1}. Consider the system
‖x1q‖ < q−υ

‖x2q‖ < q−υ

· · ·
‖xnq‖ < q−υ,

(1)

where (x1, · · · , xn) ∈ Sn (here ‖t‖ denotes the distance between t and the nearest integer).



28

Let Pn(υ) denote the set of all points on Sn for which (1) holds for infinitely many values of q ∈ N. Similar
problem on S2 was considered in [1]. The value of Hausdorff dimension dimP2(υ) when υ > 1 was proved to
be equal to 1

υ+1 by M. Dodson and H. Dickinson.

For υ > 1 one can prove the following lemma:

Lemma 1. There exists a positive integer Q such that for any q > Q, q ∈ N, from the inequalities
|x1 − p1

q | < q−1−υ

· · ·
|xn − pn

q | < q−1−υ

for a certain combination of pi ∈ Z and some (x1, x2, . . . , xn) ∈ Sn it follows that (p1q ,
p2
q , . . . ,

pn

q ) ∈ Sn.

Let Tn be the set of all rational points x = (p1q ,
p2
q , . . . ,

pn

q ) ∈ Sn, pi ∈ Z, q ∈ N. For any x ∈ Tn denote

N(x) = q. Then the following lemma holds:

Lemma 2. For any distinct x, y ∈ Tn such that N(x) 6 Q and N(y) 6 Q we have

|x− y| > 1
Q

Lemma 1 and Lemma 2 allows us to construct a regular system of points, which leads to the following lower
bound for the Hausdorff dimension

dimPn(υ) 6
n− 1
υ + 1

.

The upper bound can be easily obtained by summation: dimPn(υ) > n−1
υ+1 .

This proves the following theorem.

Theorem 1. For υ > 1 Hausdorff dimension of the set Pn(υ) equals dimPn(υ) = n−1
υ+1 .
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LINEAR DIOPHANTINE APPROXIMATIONS ON THE PLANE WITH A
CONTINUOUS PARAMETER

Shikh S. (Minsk, Belarus)

During last years as a result of wide application of metric theory in number geometry (works of F. Getze)
the following problem took on special significance.

Let I = [a, b] be an interval, Q > 0 be big and δ > 0 be small rational numbers. Traditional Diophantine
approximations theory tries to clear up the question of solvability in integers q for systems of inequalities
max(‖α1q‖, ‖α2q‖) < Q−µ, 1 6 q 6 Q, where µ > 0, (α1, α2) ∈ R2, ‖x‖ is the distance between x ∈ R
and the nearest integer. It's a well known fact that if µ = 1

2 then the system is solvable for any (α1, α2). If
right-hand member is diminishing then not all pairs (α1, α2) satisfy the system. This situation generates a need
of distinguishing and estimating of these sets. µA is Lebesgue measure of a measurable set, c is a constant, that
doesn't depend on δ or Q.

Theorem 1. Let α1 and α2 be such that starting with some q > q0(υ), 1 < υ < 2 an inequality ‖α2
α1
q‖ > q−υ

holds. Let L(δ,Q) denote the set of t ∈ I for which the system of inequalities{
max(‖α1t)q‖, ‖α2tq‖) < δQ−1/2

1 6 q < δQ

is solvable. Then
µL(δ,Q) 6 cδ2µI.
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ON RECURRENCE IN THE AVERAGE
Shkredov I.D. (Moscow, MSU)

ishkredov@rambler.ru

Let X be a metric space with a metric d(·, ·) and a Borel sigma�algebra of measurable sets Φ. Let T be a
measure preserving transformation of the measure space (X,Φ, µ) and let us assume that the measure of X is
equal to 1. The well�known Poincare theorem asserts that for every point x ∈ X:

∀ε > 0 ∀K > 0 ∃t > K : d(T tx, x) < ε.

Let Hα be an ordinary Hausdorff measure on X. The following theorems 1 and 2 were proved by
M. Boshernitzan. (A similar result was obtained independently by N.G. Moshchevitin).

Theorem 1. Let X be a metric space with Hα(X) = C < ∞ and T be a measure preserving transformation
of (X,Φ, µ) into (X,Φ, µ).
Then for almost every x ∈ X lim infn→∞{nβ · d(Tnx, x)} <∞ , where β = 1/α.

We shall say that a measure µ is congruent to a measure Hh, if any µ�measurable set is Hα�measurable.

Theorem 2. Let X be a metric space, Hα and µ are congruent and for any µ-measurable set A µ(A) = Hα(A).
Let T be a measure preserving transformation of X.
Then for almost every x ∈ X lim infn→∞{nβ · d(Tnx, x)} ≤ 1, where β = 1/α.

In this work we obtain the mean value of the local recurrence and the N -recurrence constants and also the
value of the recurrence constant in the topological case. We also apply this approach to the theory of continued
fractions. Our result is the following.

Theorem 3. For any ε > 0 and for almost all (with respect to Lebesgue measure) numbers α = [a1, a2, . . . ]
there exists an increasing sequence {nν}ν∈N, such that

a1 = anν+1, a2 = anν+2, . . . , akν = anν+kν (1)

and kν ≥ (6 ln 2/π2 − ε) · lnnν .
2) For any δ > 0 measure of those α for which there exists an increasing sequence {nν}ν∈N, such that (1)
holds and kν ≥ (1 + δ)/ ln 2 · lnnν equals zero.
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HARMONIC ANALYSIS ON TOTALLY DISCONNECTED GROUPS AND
IRREGULARITIES OF POINT DISTRIBUTIONS

Skriganov M.M. (St.Petersburg, Steklov Mathematical Institute )
skrig@pdmi.ras.ru

We study point distributions in the multi-dimensional unit cube which possess the structure of finite
abelian groups with respect to certain p-ary arithmetic operations. Such distributions can be thought of as
finite subgroups in a compact totally disconnected group of the Cantor type. We apply methods of Lq harmonic
analysis to estimate very precisely the Lq-discrepancies for such distributions. Following this approach, we
explicitly construct point distributions with the minimal order of Lq-discrepancy for each q, 1 < q <∞.

ESTIMATES OF THE MEASURES OF SETS WHERE THE MODULUS OF A
SMOOTH FUNCTION IS AN UPPER BOUND

Symotyuk M.M. (Lviv, Pidstryhach Institute for Applied Problems of Mechanics and
Mathematics)

ptashnyk@lms.lviv.ua

For a function f defined in [0, T ] we denote G(f, ε) = {t ∈ [0, T ] : |f(t)| ≤ ε}, ε > 0. Let µ(A) be the
Lebesgue measure in R of a measurable set A ⊂ R; Cn([0, T ]; R) (respectively Cn([0, T ]; C)) be the set of all
real functions f : [0, T ] → R (respectively of all complex functions f : [0, T ] → C), which have in [0, T ] the
continuous derivatives of the degree ≤ n.

In the metric theory of diophantine approximations on real manifolds [1], in mathematical physics when
investigating the problem of small denominators [2] lemma by A.S. Piartly [3] has numerous applications. In
this lemma it is proved that for a function f ∈ Cn([0, T ]; R), which satisfies the condition |f (n)(t)| ≥ δ, δ > 0,
t ∈ (0, T ), the inequality µ(G(f, ε)) ≤ C1(ε/δ)1/n, C1 = C1(n) holds.

The next propositions are generalizations of this Piartly result.

Theorem 1. Let f ∈ Cn([0, T ]; R), pj ∈ Cn([0, T ]; R), j = 1, . . . , n. If the inequality∣∣f (n)(t) + p1(t)f (n−1)(t) + . . .+ pn(t)f(t)
∣∣ ≥ δ, δ > 0, t ∈ (0, T ),

holds, then for all ε > 0

µ(G(f, ε)) ≤ C2M
ξn exp(ηnMT )(ε/δ)1/n, C2 = C2(n, T ),

where M = 1 + max
1≤j≤n

‖pj(t)‖Cn[0,T ], and the constants ξn, ηn are determined by n.

Theorem 2. Let L(λ) = λn + a1λ
n−1 + . . . + an, where aj ∈ C, j = 1, . . . , n. Let λj, j = 1, . . . , n, be the

roots of the polinomial L(λ), Λ = 1 + max
1≤j≤n

|λj |, Λ− = min
1≤j≤n

Reλj, ψ = max
t∈[0,T ]

exp(−Λ−t). If the function

f ∈ Cn([0, T ]; R(C)) is the solution of the Cauchy problem

L(d/dt)f(t) = 0, f (j−1)(0) = fj , j = 1, . . . , n, |f1|+ . . .+ |fn| > 0,

then for all ε, 0 < ε <
gf

n2neTψΛn
, gf ≡ max

1≤j≤n

{
|fj |Λ−j

}
,

µ(G(f, ε)) ≤ C3Λ (εψ/gf )
1/(n−1)

, C3 = C3(n, T ).

Another analogues of Piartly's lemma are also proved.

References

[1] Sprindzhuk V.H. Metrical theory of diophantine approximations. � M.: Nauka, 1977. � 143 p. (in Russian).
[2] Ptashnyk B.I. Ill�posed boundary value problems for partial differential equations. � K.: Nauk. dumka, 1984.
� 264 p. (in Russian).
[3] Piartly A.S. Diophantine approximations on submanifolds in Euclidean space // Funktsion. Anal. i Prilozh.
� 1969. � Vol. 3 (4). � P. 59�62 (in Russian).



31

ON A LOCAL-GLOBAL PRINCIPLE IN NUMBER FIELD TOWERS
FOR THUE CURVES

Trelina L.A. (Minsk, Belarus)
trelina@im.bas-net.by

This talk concerns the problem of finding algebraic integer points on an affine curve given by the equation

F (x, y) = a, (1)

where F (X,Y ) ∈ OK [X,Y ] is a homogeneous polynomial of degree n with coefficients in the ring of integers of
a number field K, a ∈ OK .

Using a local-global method of B. Birch and results of K. Gy�ory and Y. Bugeaud, we obtain effective bounds
c1 and c2 in the following

Theorem 1. Suppose that a is in the ideal generated by the coefficients of F . There are an algebraic extension
L of K of degree [L : K] ≤ c1 and a solution x, y ∈ OL to (1) such that max(h(x), h(y)) ≤ c2, where h(α)
denotes the height of an algebraic number α.

CONVERGENCE CASE OF A KHINTCHINE-TYPE THEOREM FOR
ANALYTIC FUNCTIONS WITH LARGE DERIVATIVES

Vasilyev D.V. (Minsk, Belarus)
vasilyev@im.bas-net.by

Let Ψ(x) be a positive nonincreasing function in a real variable x. The classical result of Khintchine states
that for almost all x (in the sense of Lebesgue measure over R) inequality∣∣∣∣x− p

q

∣∣∣∣ < Ψ(x)
q

(1)

has infinite or finite number of solutions in (p, q) ∈ Z×N depending respectively on the divergence or convergence
of the series

∑∞
q=1 Ψ(q).

We establish the following

Theorem 1. Let Ψ(x) be a positive nonincreasing function in a real variable x defined over all x > 0 such
that

∑∞
H=1 Ψ(H) <∞. Let f1(z), . . . , fn(z) be fixed analytic functions of complex variables over a domain D.

We put F (z) = a0 + a1f1(z) + . . . + anfn(z) where a0, . . . , an are integers and H(F ) = max
0≤i≤n

|ai|. Then the

system of inequalities {
|F (z)| < H(F )−

n−2
2 Ψ1/2(H(F ))

|F ′(z)| > H(F )1/2

has infinitely many solutions in functions F (z) for the set of Lebesgue measure zero.

ALGEBRAIC INTERPOLATION
Zmiaikou D.I. (Minsk, BSU)
David_Zmiaikou@hotmail.com

Let us have an arbitrarily given function f : [a, b] → R and the interpolation step h = b−a
N > 0. Then in an

arbitrary manner we determine the function on the interval (b,+∞). The values f(x0), f(x1), . . . , f(xk), . . . ,
where xk = a+ kh, are independent variables of the general interpolation problem. Therefore we can consider
countably dimensional R-module V with a basis

fk = f(xk), k = 0,∞,



32

at the same time V is a ring with a natural product of formal series (f i · f j = f i+j). This ring contains the
so-called finite differences

∆k =
k∑
j=0

(−1)k−j(kj )f
j .

Theorem 1. The set of vectors ∆0,∆1, . . . , δk, . . . is a basis of space V and

∆m ·∆n = ∆m+n,

then we have, that the polynomial

P (x) =
n∑
i=0

∆i

hii!
(x− x0)(x− x1) . . . (x− xi−1)

interpolates the function f(x) at nodes xk, k = 0, N .
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LEVEQUE'S U-POINTS ON SMOOTH CURVES
Zorin E. (Minsk, Belarus)

We shall denote by Hp the height of a polynomial P ∈ Z[x] where the height of a polynomial with integer
coefficients is defined as the maximum of the absolute values of its coefficients.

Definition. We shall say that a real number α is a Leveque's number of degree not greater than n if
∀k ∈ ℵ ∃Pk ∈ Z[x]| 0 < |Pk(α)| < 1

Hk
Pk

, degPk 6 n. We shall denote by Sn the set of all Leveque's U -numbers

of degree not greater than n. Let us put by definition S0 = ∅.
A Leveque's U -number of degree n is an element of the set Un = Sn\Sn−1, n ∈ ℵ.
We shall say that a point (x, y) ∈ R2 is a Un-point if x, y ∈ Un.
One can note that U1 is the same as the set of well known Liouville's numbers. It is obvious that

∞∑
n=1

10−n! ∈ U1.

It is a little bit trickier to prove that

k

√√√√ ∞∑
n=1

10−n! ∈ U1

(see [2]).

These examples show that Uk are not empty.

Erdös showed that each real number can be decomposed into a sum of two Liouville's numbers. Also each
non-zero real number can be represented as a product of two Liouville's numbers.

One can represent this fact as follows: for any real number c there exists a Un-point on the curves defined
by y = c− x, y = c/x.

The theorem below is a direct generalization of this statement.

Theorem 1. Let f(x, y) = 0 define a smooth curve in R2, say A. Suppose that A is neither a horizontal nor
a vertical line, i.e.

∃{(x1, y1), (x2, y2)} | f(xi, yi) = 0, x1 6= x2, y1 6= y2

Then for any natural n there exists a Un-point on A. Moreover, for any open

V ⊂ R2 V ∩ A 6= ∅ ⇒ ∃ Un − point in V ∩ A.



33

References

[1] Bernik V.I., Dombrovskii I.R. Vesti ANB, ser. fiz-mat. navuk, 1992.
[2] Baker A. "Transcendental Number Theory". Camb. Univ. Press. 1974.



Íàó÷íîå èçäàíèå

International conference

�Diophantine analysis, uniform distributions and applications�

August 25-30, 2003, Minsk, Belarus

abstracts

Ìåæäóíàðîäíàÿ êîíôåðåíöèÿ

�Äèîôàíòîâ àíàëèç, ðàâíîìåðíîå ðàñïðåäåëåíèå è èõ ïðèëîæåíèÿ�

25-30 àâãóñòà 2003 ã., Ìèíñê, Áåëàðóñü

òåçèñû äîêëàäîâ

Ðåäàêòîð Áåðíèê Â.È
Òåõíè÷åñêèé ðåäàêòîð Âàñèëüåâ Ä.Â.

Ïîäïèñàíî â ïå÷àòü 22.08.2003 ã. Ôîðìàò 60× 84/16.
Óñë. ïå÷. ë. 2,84. Ó÷.-èçä. ë. 2,61.

Òèðàæ 70 ýêç. Çàêàç 27.

Îòïå÷àòàíî íà ðèçîãðàôå Èíñòèòóòà ìàòåìàòèêè ÍÀÍ Áåëàðóñè.
Èçäàòåëü è ïîëèãðàôè÷åñêîå èñïîëíåíèå:

Èíñòèòóò ìàòåìàòèêè ÍÀ Áåëàðóñè
ËÂ � 379 îò 13.04.2001 ã.
ËÏ � 266 îò 25.05.2003 ã.

220072, Ìèíñê, Ñóðãàíîâà, 11.


