1996638 1558623 3052177 1134053 2925715 1027551 783007 520206 2662508 827121 1769631 3079690 461260 1082332 2542376 933073 1164221 3135973 1197852 25398 alpha = 999/1000 The unimodular matrix found is 0 -1 0 -2 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 -1 -1 0 1 1 0 1 0 -1 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 -1 -1 0 -1 1 0 1 0 0 0 0 0 0 0 0 -1 1 0 0 0 -1 1 -1 0 -1 0 0 1 -1 0 0 0 -1 -1 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 1 -1 -1 0 1 0 1 0 0 -1 -1 0 -2 0 0 0 0 0 -1 0 0 1 0 -1 1 -1 1 0 0 -1 0 0 -1 1 0 -1 -1 1 0 0 0 1 0 2 -1 0 0 -1 1 1 0 0 1 0 -1 0 0 0 1 0 0 0 0 0 0 1 1 -1 -1 0 -1 0 0 0 0 -1 0 0 0 -1 1 -1 -1 1 1 0 -1 -1 1 1 0 0 0 -1 0 -1 0 0 1 1 0 -1 1 1 0 -1 -1 1 0 1 -1 0 -1 0 1 0 1 0 0 0 -1 -1 0 0 -1 1 0 0 -1 0 0 -1 -2 1 0 -1 0 1 0 0 0 0 0 0 -1 0 1 0 -1 0 0 0 2 1 0 0 0 0 0 1 -1 0 0 0 -1 0 1 0 0 -1 -1 2 0 0 0 -1 0 0 0 0 -1 0 0 0 -1 1 -1 0 1 0 -1 0 0 1 0 1 -2 0 -1 0 0 0 0 0 0 0 0 -1 -2 1 -1 1 0 0 1 1 1 -1 0 0 0 0 -1 0 0 0 1 0 0 -1 0 0 -1 -1 -1 2 1 0 1 1 0 1 1 0 0 0 1 1 -1 1 0 0 0 2 -1 0 0 0 0 -1 -1 0 1 -1 1 -1 -1 -1 0 -1 1 1 0 0 1 1 0 1 -1 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 1 -1 -1 0 1 0 0 -1 Multiplier vector found by LLL is b[20]=0 0 1 0 0 -1 0 0 0 0 0 0 1 -1 -1 0 1 0 0 -1 Euclidean norm squared = 7. This is the shortest multiplier. ---------------------------------------------------------- alpha = 1 Unimodular matrix 0 -1 0 -2 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 -1 -1 0 1 1 0 1 0 -1 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 -1 -1 0 -1 1 0 1 0 0 0 0 0 0 0 0 -1 1 0 0 0 -1 1 -1 0 -1 0 0 1 -1 0 0 1 0 1 0 0 -1 -1 0 -2 0 0 0 0 0 -1 0 0 1 0 -1 1 -1 1 0 0 -1 0 0 -1 1 0 -1 -1 1 0 0 0 1 0 2 0 0 1 -1 1 0 -1 0 -1 0 -1 0 0 0 0 0 0 1 0 0 0 1 1 -1 -1 0 -1 0 0 0 0 -1 0 0 0 -1 1 -1 -1 0 -1 1 0 0 -1 0 0 -1 -2 1 0 -1 0 1 0 0 0 0 0 1 0 -1 -1 1 0 1 -1 0 -1 0 1 0 1 0 0 0 -1 -1 0 -1 1 -1 -1 -1 0 -1 1 1 0 0 1 1 0 1 -1 0 0 0 0 0 -1 0 1 0 0 -1 -1 2 0 0 0 -1 0 0 0 0 -1 0 0 0 -1 0 1 0 -1 0 0 0 2 1 0 0 0 0 0 1 -1 0 0 0 -1 0 0 0 1 -1 0 1 -1 2 0 -1 -1 -1 0 0 0 0 1 0 0 0 0 0 0 1 -1 0 -1 1 -1 0 0 0 2 -1 0 1 -1 -1 2 0 -1 0 1 -1 0 0 -1 0 0 0 0 1 0 1 -1 0 1 0 0 -1 -1 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 1 -1 -1 -1 -1 -1 1 0 1 1 0 -1 0 1 0 1 0 0 1 0 1 0 1 0 1 -1 0 2 -1 1 0 -1 0 0 0 -1 1 0 -1 -1 0 0 1 0 0 0 1 1 0 -1 0 0 2 -1 0 0 0 0 0 0 -1 0 -1 Multiplier vector b[20]=0 0 0 1 1 0 -1 0 0 2 -1 0 0 0 0 0 0 -1 0 -1, norm squared = 10. Shortest multiplier vector: b[20]+b[3]+b[4]+b[5]-b[6]+b[11]-b[12]+b[13]+b[14]+b[15] = 0 0 1 0 0 -1 0 0 0 0 0 0 1 -1 -1 0 1 0 0 -1 Euclidean norm squared = 7
Back to LLLGCD examples page