/* BC program raney */ print "Input: a non-singular matrix A=[p,q;r,s], p,q,r,s>=0.\n" print "With L=[1,0;1,1] and R=[1,1;0,1], we express A uniquely as\n" print "a product of positive powers of L and R, followed by a row-balanced B.\n" print "B=[a,b;c,d] is row-balanced if (a<c & b>d) or (c<a & d>b)\n" print "and a,b,c>=0. We exclude A=I_2 and A=[0,1;1,0]. \n" print "With U[a]=[a,1;1,0],\n" print "note that U[a[0]...U[a[2n]]=R^a[0]L^a[1]...R^a[2n]U\n" print "and that U[a[0]...U[a[2n+1]]=R^a[0]L^a[1]...L^a[2n+1]I_2\n" print "The number of terms L and R is returned.\n" print "See 'On continued fractions and finite automata', G.N. Raney, \n" print "Math. Annalen, 206, 265-283 (1973).\n" print "Type raney(p,q,r,s)\n" define raney(p,q,r,s){ auto det,i,j,k det=p*s-q*r if(det==0){ print "A is singular\n" return(0) } if(p<0){ print "p<0\n" return(0) } if(q<0){ print "q<0\n" return(0) } if(r<0){ print "r<0\n" return(0) } if(s<0){ print "s<0\n" return(0) } if(p==1&&q==0&&r==0&&s==1){ print "A=I_2\n" return(0) } if(p==0&&q==1&&r==1&&s==0){ print "A=U\n" return(0) } k=0 while(1){ i=0 while(p>=r && q>=s){ p=p-r q=q-s i=i+1 } if(i){ k=k+1 if(i>1){ print "R^",i }else{ print "R" } } j=0 while(r>=p && s>=q){ r=r-p s=s-q j=j+1 } if(j){ k=k+1 if(j>1){ print "L^",j }else{ print "L" } } if((p<r && q>s) || (p>r && s>q)){ break } } print"[",p,",",q,",",r,",",s,"]" print "\n" return(k) }